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A simple approximation is proposed for the problem of the dispersion of marked 
particles in an incompressible fluid in random motion when the probability 
distribution of the velocity field is taken as Gaussian, homogeneous, isotropic, 
stationary and of zero mean. Approximations for the Lagrangian velocity 
correlation function and the dispersion are given and compared with exact 
computer calculations of Kraichnan. Agreement is found to be good except for 
time-independent velocity fields and singular wavenumber spectral functions. 

1. Introduction 
A n  important feature of turbulent motion is the enhancement of diffusion 

processes to which i t  gives rise, A complete discussion of this would necessitate a 
satisfactory theory of turbulence, which does not yet exist, and it is therefore of 
interest to examine the simpler problem in which the fluid velocity field has a 
prescribed probability distribution. As well as giving useful information about 
the diffusion occurring in turbulent motion this problem is also of interest since 
it contains the same basic closure difficulty as turbulence theory without the 
additional complexity of nonlinear dynamics. It can therefore serve as a test 
case for approximation procedures whose aim is the resolution of the closure 
difficulty. It should be mentioned too that there are many closely related prob- 
lems in other fields; wave propagation in random media and the quantum 
mechanics of a particle moving in a disordered lattice are just, two which come 
to mind. 

For mathematical simplicity it seems natural to consider first the case in which 
the Eulerian velocity field u(x, t )  has a Gaussian probability distribution. To 
simplify matters furtherwe shall assume that the distribution is homogeneous, iso- 
tropic, stationary and of zero mean, and that the velocity field satisfies the incom- 
pressibility condition. As is well known, an exactly Gaussian velocity field lacks 
certain important features which are present in actual turbulent flow, namely 
nonlinear energy transfer and the passive convection of small spatial scales of 
motion by larger ones. However, experimental evidence seems to show that the 
statistics of homogeneous turbulence are close to  Gaussian except for the smaller 
scales of motion (Frenkiel & Klebanoff 1967a, b ) .  Hence the Gaussianity assump- 
tion should give reasonable approximations for quantities which are dominated 
by contributions from the large scales, such as the Langrangian velocity correla- 
tion function and the dispersion for time values which are not too small. 
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The problem may be formulated in either Eulerian or Lagrangian form. The 
Eulerian formulation is obtained by writing down an equation for the quantity 

w, t )  = q x  - X ( t ) } ,  ( 1 )  

where X ( t )  is the position of a particular fluid particle at  time t .  The equation in 
question is of course the continuity equation 

( a p t  + UJX, t )  apz,) #(x, t )  = 0. (2) 
The probability density of the position x of the particle at time t is then given by 
the expectation value (&x, t ) ) .  

This approach has formed the basis of most previous work on the problem. 
Stochastic-model theory (Kraichnan 1961) applied to (2) yields the direct- 
interaction approximation, which gives a nonlinear integral equation for the 
probability density. The same approximation may also be obtained by a self- 
consistent expansion procedure similar to one formulated by the author (1969) 
for the full turbulence problem. The Wiener-Hermite expansion method has 
also been applied to the problem by Saffman (1969). These approximations 
become asymptotically exact when the correlation time of the velocity field is 
very much less than the eddy circulation time (defined as the correlation length 
over the root-mean-square velocity). They also satisfy realizability conditions 
since they are derived from approximations for the random quantity q5 itself. 
Neither method however ensures the positivity of the probability density. 

Computer simulations of particle diffusion have been carried out by Kraichnan 
(1970a). In these a Gaussian velocity field was represented by a linear super- 
position of a hundred Fourier modes with random amplitudes and phases. The 
equation for the particle motion was solved numerically and expectation values 
of quantities of interest were calculated by averaging over a large number of 
realizations. Good agreement was found (in three dimensions) between the 
direct-interaction approximation and these ‘exact ’ results for several quantities 
of interest, including the Lagrangian velocity correlation function 

UL( t )  = i(X(0). X(t)) 

and the dispersion Y( t )  = Q([X(t)I2).  
The Lagrangian formulation is provided by the random equation 

x ( t )  = d7U(X(T),T) ,  1: (3) 

where, without loss of generality, we have assumed the particle to  start from the 
origin at time zero. A solution of (3) in the form of a power series in t may easily be 
written down and from it power series for uL(t)  and Y ( t )  may be obtained. Even if 
such series were convergent, which seems unlikely, they are clearly useless for 
large t .  An interesting attempt has been made by Kraichnan (1970b) to extract 
useful information from such power series. This is achieved by replacing the 
power series with another expansion by a procedure which involves the expression 
of the Fourier transform in terms of a suitable set of orthogonal polynomials. For 
reasons which are not yet clear, truncation of the resulting series gives good 
approximations. 
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Several successive-approximation procedures are known for non-random 
equations, such as the Newton-Kantorovich method (see, for example, 
Krasnosel'skii et al. 1972, chap. 3 ) .  Some of these procedures have been investi- 
gated for random equations with a view to obtaining general existence theorems 
and convergence proofs (Bharucha-Reid 1964) but no concrete applications to 
particular problems appear to have been made. We shall examine here the 
feasibility of the simplest of these successive-approximation methods for 
the problem in hand. This will be done simply by comparing the values 
of the Lagrangian velocity correlation function and the dispersion obtained 
from the approximation with the exact values of Kraichnan referred to above. 
No rigorous discussion of convergence properties will be attempted. 

The simplest approximation technique generates from an initial approxima- 
tion X(O)(t) an infinite chain of approximants given by the formula 

X(n+l)(t) = 1; d7u(X(n)(7),  7 ) .  

x ( /;a7 j;d7r[x$n)(7) - X$-1)(7) ]  [ X 3 7 ' )  - xp-1)(7')]- 

The nth approximant for uL(t) is then Q(X(n)(O) .X(n)(t)). 

can be ascertained by writing 
An extremely crude assessment of the convergence properties of the sequence 

([X(rr+l)(t) - X'"'(t)]2) 

>. x Ua,/(X(n-1)(7), 7 )  UDL,y(x(n-1)(7') ,  7 ' )  

where the comma notation denotes spatial differentiation. The right-hand side is 
of order V2TtL-2([X(n)(t) - X(n-1)(t)l2) for t > T ,  where V is the root-mean-square 
velocity, L the correlation length and T the correlation time of the velocity field. 
One therefore expects the sequence to converge for values of t / T  appreciably 
less than ( L / V T ) 2 .  If the ratio Ll V T  is large cornparedwith unitythen the sequence 
should converge rapidly for all t values of interest. Unfortunately this argument 
tells us nothing about the case of real turbulence, for which LIVT x 1. 

A fact which soon becomes apparent is that, in general, useful closed expressions 
are provided by the method only for n < 2. However, as will be demonstrated 
below, the second approximant is quite good except for frozen fields and singular 
wavenumber spectral functions. For the frozen-field case the third approximant 
can be expressed in the form of a multiple integral but this has not yet been 
calculated. 

2. The iteration procedure and approximations 

second iterates are then given by 
The initial approximation will be taken as zero, i.e. X(O)(t) = 0. The first and 
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Hence we have 

(X(2) (0 ) .X(2) ( t ) )  = ( U C O ,  O).u ( / ; d T U ( o , T ) , t ) ) .  

Introducing the delta function, this can be written as 

and using the Fourier representation of the delta function it becomes 

The expectation value in this expression can be obtained by functional differentia- 
tion of the identity 

0, 7 < 0, 

{ 1, 7 > 0, 
e(7) = 

and R is the correlation function of the velocity field defined by 

(u,(x, t )  u~(x' ,  t ' ) )  = Rag(x - x', t - t ' ) .  

In  order to be able to compare our resuIts with those of Kraichnan we shall 
confine ourselves to correlation functions of the form 

with D(0) = 1, dkE(k) =$v$ 
!Om 

Making use of the incompressibility condition, the expectation value in (4) 
can now be written as 

I 2 ~ ( t ) /  d k ~ ( k )  exp ( - i vgk2I;  d r l I f  ciT20(T1 - T 2 )  
0 0 

and we thus have finally 
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FIGURE 1. The Lagrangian velocity correlation function as a function of time: upper 
curve, case (i) ; lower curve, case (ii). Kraichnan’s exact values: 0 ,  case (i); 0, case (ii). 

The four cases computed by Kraichnan have a D(t )  of the form 

D(t )  = exp ( - &$t2) 
and are given by 

(i) E ( k )  = ~ v ~ S ( k - k , ) ,  wo = 0, 

(ii) E ( k )  = $&S(k-k,), 
(iii) E ( k )  = 16(2/n)*v:k;5k4exp ( -  2k2/k$),  
(iv) E(k)  = 16(Z/n)~v~k~5k4exp ( -  2 k 2 / k 3 ,  

The approximations for v;2uL(t) from expression (5) corresponding t o  these 

wo = Icovo, 
w, = 0, 
wo = kovo. 

are respectively 

(i) exp ( -  &T~), 
(ii) exp(I-a72-elrp(-~72)-((gn)*7erf(7/1/2)), 
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FIGURE 2. The Lagrangian velocity correlation function as a function of time: upper curve, 
case (iii); lower curve, case (iv). Kraichnan's exact values: 0, case (iii); 0 ,  case (iv). 

(iii) ( I  + &-2)-%, 

(iv) exp ( - & T ~ ) / {  I + +[(+T)* 7 erf (7142) - I + exp ( - + ~ ~ ) ] ) 2 5 ,  

where we have put 7 = k,v,t. The diagrams show these functions together with 
points representing the exact values. 

The exact values of the dispersion and the eddy viscosity, defined as 

K ( t )  = &(X(t) .X(t)), 

are related to the Lagrangian velocity correlation function by the equations 
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FIGURE 3. The dispersion as a function of time : upper curve, case (i) ; lower curve, case (ii). 
Kraichnan's exact values: 0 ,  case (i); 0. case (ii). 

The first of these is not necessarily true however for the approximate values; 
that is, we have in general 

(X'"'(t) . X(")(t)) =I= 1: dT(X(%)(O).  X y 7 ) ) .  

;Su" dT) (X(2 ) (0 ) .  X@)(Tf)). 

The expression for ( [ X ( 2 ) ( t ) ] 2 )  is rather complicated so, a t  this stage, we shall 
adopt the simpler expedient of taking as our approximation for the dispersion 
the quantity 

Graphs of this are shown €or the four cases together with the exact values of the 
dispersion. 

3. Conclusion 
It will be seen that the method is rather more successful than the crude con- 

vergence asgument would suggest, and is particularly good for case (iv), which 
is more characteristic of real turbulence. I n  case (i) it is less impressive since it 
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FIGURE 4. The dispersion as a function of time : upper curve, case (iii) ; lower curve, case (iv). 
Kraichnan’s exact values : 0, case (iii) ; , case (iv). 

fails to reproduce the negative region of uL(t) and consequently overestimates the 
dispersion. This negative region of uL(t) is associated with the negative values of 
the Eulerian correlation function, as a function of relative position, which occur 
for the spectral function of case (i). It should also be noted that the approximation 
presented is exact in the two simple cases which can be solved exactly: namely, 
uniform velocity fields, and velocity fields with delta-function time correlations. 
Our tentative conclusion is that the approximation will be reasonable for almost 
any spectral function if the ratio R = L/VT is not much smaller than unity. For 
a sufficiently smooth spectral function much smaller values of R may be accom- 
modated. It is not possible to be more precise until exact calculations for other 
spectral functions and R values are available for comparison. 

Unfortunately the method does not give equally simple approximations for the 
probability density. For the frozen-field case the spatial Fourier transform can be 
expressed as 
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I n  general, however, one obtains a functional integral. Similarly the third 
approximant for uL(t) can only be written in a useful closed form for the frozen- 
field case. We obtain 

These integrals could be computed numerically if the isotropy condition were 
used. 

An interesting question is whether the method would prove equally successful 
if the conditions of homogeneity, isotropy and zero mean velocity were dropped. 
It would then certainly be necessary to consider more carefully the choice of the 
initial approximation. Probably the best choice would be to  take the mean 
particle position as the initial approximation; this position would then be deter- 
mined self-consistently. At second order this would lead to the equation 

the right-hand side of which can be rewritten, in the usual way, in terms of the 
correlation function and the mean of the velocity field. Finally there is the 
possibility of attacking the turbulence problem by using such a successive- 
approximation technique for the Lagrangian form of the Navier-Stokes equation. 
These questions are now being investigated. 
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